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Introduction to Probability and Combinatorics

r Sample space – The set of all possible outcomes of an experiment is known as the sample
space of the experiment and is denoted by S.
r Event – Any subset E of the sample space is known as an event. That is, an event is a set
consisting of possible outcomes of the experiment. If the outcome of the experiment is contained
in E, then we say that E has occurred.

r Axioms of probability – For each event E, we denote P(E) as the probability of event E
occuring. By noting E1,...,En mutually exclusive events, we

(ha⋃vethe)3followingaxioms:n∑n(1)06P(E)61(2)P(S)=1(3)PEi=P(Ei)i=1i=1

r Permutation – A permutation is an arrangement of r objects from a pool of n objects, in a
given order. The number of such arrangements is given by P(n, r), defined as:
()=n!Pn,r
(n−r)!

r Combination – A combination is an arrangement of r objects from a pool of n objects, where
the order does not matter. The number of such arrangements is given by C(n, r), defined as:
()=P(n,r)=n!Cn,r
r! r!(n−r)!
Remark: we note that for 0 6 r 6 n, we have P(n,r) > C(n,r).

Conditional Probability

r Bayes’ rule – For events A and B such that P(B) > 0, we have:

()=P(B|A)P(A)PA
|B P(B)

Remark: we have P(A
∩ B) = P (A)P (B|A) = P (A|B)P (B).
r Partition – Let

{Ai, i ∈ [[1,n]]} be such that for all i, Ai 6= ∅. We say that {Ai} is a partition
if we have:

⋃n∀i6=j,Ai∩Aj=∅andAi=Si=1

∑nRemark:foranyeventBinthesamplespace,wehaveP(B)=P(B|Ai)P(Ai).i=1
r Extended form of Bayes’ rule – Let

{Ai,i ∈ [[1,n]]} be a partition of the sample space.
We have:

()=P(B|A)P(A)PA
| B

∑ k k k n P ( B | A i ) P ( A i ) i = 1

r Independence – Two events A and B are independent if and only if we have:

P ( A
∩ B) = P (A)P (B)

Random Variables

r Random variable – A random variable, often noted X, is a function that maps every element
in a sample space to a real line.

r Cumulative distribution function (CDF) – The cumulative distribution function F,
which is monotonically non-decreasing and is such that lim F(x) = 0 and lim F(x) = 1, is

x
→ − ∞  x → + ∞
defined as:

F(x)=P(X6x)

Remark: we have P(a < X 6 B) = F(b)
− F (a).

r Probability density function (PDF) – The probability density function f is the probability
that X takes on values between two adjacent realizations of the random variable.

r Relationships involving the PDF and CDF – Here are the important properties to know
in the discrete (D) and the continuous (C) cases.

Case C

∑DFFPDFfPropertieso∑fPDF(D)F(x)=P(X=xi)f(xj)=P(X=xj)06f(xj)61andf(xj)=1xi6xj

ˆx ˆ( dF +∞C)F(x)=f(y)dyf(x)=f(x)>0andf(x)dx=1
− ∞  d x  − ∞

r Variance – The variance of a random variable, often noted Var(X) or σ2, is a measure of the
spread of its distribution function. It is determined as follows:
Var(X) = E[(X
− E[X])2] = E[X2] − E[X]2

r Standard deviation – The standard deviation of a random variable, often noted σ, is a
measure of the spread of its distribution function which is compatible with the units of the

actual random variable. It is determined as f

√ollows:σ=Var(X)
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r Conditional density – The conditional density of X with respect to Y , often noted f |
is defined as follows:

()=fXY(x,y)fX
|Yx fY(y)

r Independence – Two random variables X and Y are said to be independent if we have:

fXY (x,y) = fX(x)fY (y)

r Expectation and Moments of the Distribution – Here are the expressions of the expected
value E[X], generalized expected value E[g(X)], kth moment E[Xk] and characteristic function
ψ(ω) for the discrete and continuous cases:

Case  E[X] E[g(X)] E[Xk

∑ ∑ ∑ ] ∑ ψ ( ω ) n n n n ( D ) x f ( x ) g ( x ) f ( x ) x k f ( x )

( ) i ω x i i i i i i i f x i e i = 1 i = 1 i = 1 i = 1

ˆ+∞ˆ+∞ˆ+∞ˆ+∞(C)xf(x)dxg(x)f(x)dxxkf(x)dxf(x)eiωxdx
− ∞  − ∞  − ∞  − ∞

Remark: we have eiωx = cos(ωx) + i sin(ωx).

r Revisiting the kth moment – The kth moment can also be computed with the characteristic
function as follows:

[][]=1∂kkψEXik∂ωkω=0

r Transformation of random variables – Let the variables X and Y be linked by some
function. By noting fX and fY the distribution func

∣∣tionofXandYrespectively,wehave:()=()dxfYyfXx

∣∣∣∣dyrLeibnizintegralr

(ule–

Letgbeafunctionofxandpotentiaˆllyc,anda,bboundariesthatmaydependonc.

Wehavˆe:)∂b()=∂b∂ab∂ggxdx·g(b)−·g(a)+(x)dx∂ca∂c∂ca∂c

r Chebyshev’s inequality – Let X be a random variable with expected value µ and standard
deviation σ. For k,σ > 0, we have the following inequality:
P (
|X−µ|>kσ)16k2

r Marginal density and cumulative distribution – From the joint density probability
function fXY , we have:

Case Margi

∑naldensityCumul∑ative∑function(D)fX(xi)=fXY(xi,yj)FXY(x,y)=fXY(xi,yj)jxi6xyj6y

ˆ+∞ˆxˆy(C)fxfx,ydy′′′′X()=XY()FXY(x,y)=fXY(x,y)dxdy
− ∞  − ∞ − ∞

r Distribution of a sum of independent random variables – Let Y = X1 + ... + Xn with
X1, ..., Xn independent. We have:

∏nψY(ω)=ψX(ω)kk=1

r Covariance – We define the covariance of two random variables X and Y , that we note σ2
X Y

or more commonly Cov(X,Y ), as follows:

Cov(X,Y ) , σ2
XY =E[(X− µX)(Y − µY )]  = E[XY ] − µXµY

r Correlation – By noting σ
X, σY the standard deviations of X and Y , we define the correlation

between the random variables X and Y , noted ρXY , as follows:

σ2
ρ  X Y X Y =
σXσY
Remarks: For any X,Y , we have ρXY
∈ [−1,1]. If X and Y are independent, then ρXY = 0.
r Main distributions – Here are the main distributions to have in mind:

TypeDistribution PD

(F)ψ(ω)E[X]Var(X)nX∼B(n,p)P(X=x)=pxqn−x(peiω+q)nnpnpqxBinomialx∈[[0,n]]
(D)
µx
X∼Po(µ) P(X=x)= e−µ eµ(eiω−1) µ µ
Poisson x!x
∈ N
e i ω b
()()=1 −eiωaa+b(b−a)2X
∼U a , b  f x  b
−aUniform[]

()(b−a)iω212x∈a,b(C)()()=1−1x−µ2X∼Nµ,σfx√e2eiωµ1ω2σ2σ−2µσ22πσGaussianx
∈ R
X
∼Exp(λ)f(x)=λe−λx 1 1 11− iω  λ  λ2

X Y ,

Jointly Distributed Random Variables
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Parameter estimation

r Random sample – A random sample is a collection of n random variables X1,...,Xn that
are independent and identically distributed with X.
r Estimator – An estimator θ̂ˆ is a function of the data that is used to infer the value of an
unknown parameter θ in a statistical model.
r Bias – The bias of an estimator θ̂ˆ is defined as being the difference between the expected
value of the distribution of θ̂ˆ and the true value, i.e.:
Bias(θ̂ˆ)=E[θ̂ˆ]
− θ

Remark: an estimator is said to be unbiased when we have E[θ̂ˆ] = θ.
r Sample mean and variance – The sample mean and the sample variance of a random
sample are used to estimate the true mean µ and the true variance σ2 of a distribution, are
noted X and s2 respectively

∑,andaresuchthat:n n1X=Xands2=σ̂ˆ2i =1(Xi−X)2n n−1i=1 i=1

rCentralLimitTheorem–Letushavearandomsample followingagiven
distribution with mean µ

(X1,...,Xnandvariance2,thenwehave:∼N√n→+∞

σ

X µ ,
σ
n

∑

)
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